Categories
Builds

Espresso Station

  • Build Time: 4 hours
  • Build Difficulty: 5

This is a little cubby drawer station I made to go with my Breville Barista Express machine. It is meant to store drink mixes, tea, espresso supplies, sugar, cups.

The Tools

  • 60 watt CO2 laser
  • rubber bands
  • Fusion360
  • Lightburn

The Materials

  • 5mm birch plywood
  • wood glue
  • sandpaper

The Build

The main body with mini handles for easy lifting, and a small wall around the edge

The empty space will have a drawer that slides in and out for main storage of tea bags, supplies, etc.

Draw with openings on both sides

I designed the drawer with a 2mm tolerance on all sides and found out that was way too much. I should have done 1mm or less. I put the hole handes on both sides to allow for air to escape because I assumed it would be a tight fit.

My trusty 60 watt CO2 laser

This is my first project with birch plywood. I did NOT know that the middle layers of the plywood were not 100% filled. Surprisingly, this 5mm birch cut much easier than 6.3mm MDF.

Rubber bands and wood glue

Putting together the pieces was messy. I used steel wool to brush off the ash from the laser cuts, but it still got everywhere.

Wood dried and cleaned

I tried to sand off the dirty ash, but found out that a damp cloth worked even better to clean up all the dirty ash from the surface.

Finished product

I engraved a little coffee logo on the front just for fun. In retrospect, the design is much too long, I could have made it a little more compact.

Mistakes

  • top-front piece was designed with no interlocking joint and relies entirely on glue
  • the 2mm gap tolerance for the drawer is way too much
  • tried to sand off ash instead of wiping it down
  • design too long, need to shorten it
  • found out i added tolerage to BOTH pieces, doubling up on the gap
  • need to engrage the logo a bit darker next time
  • need to round off the fillet on the handles more to match the drawer handle
Categories
Builds

LEGO Minifig Display Case

I previously built a minifig display case but it was big, heavy, and awkward. It also did not have a glass cover in the front and seemed to collect lots of dust, so I decided to redo it.

The Tools

  • Fusion 360 / Lightburn
  • 60 watt CO2 laser
  • staple gun
  • drill (only for pilot holes)

The Materials

  • 1/4 inch MDF
  • 5x3mm circular neodymium magnets
  • plexiglass
  • support board
  • sawtooth picture frame mounts
  • epoxy
  • hot glue gun

The Build

Shelves with engraved placement markings

I decided to make it 5 columns 4 rows of minifigs so 20 per display case. The Fusion360 design is totally parametric (I think) so I can easily adjust these to customize it.

Case put together

There are 3 types of material used. 1/4 MDF for the frame and shelves, the white support board (like you get from cheap bookshelves), and plexiglass for the front cover.

M3 nuts and bolts to hold the frame together

I used bolts for the 4 corners of the frame. I did not want to use glue. Here you can see the notch that holds the M3 bolts.

Glass with magnets holding the cover

I used neodymium magnets, 5x3mm circles, to hold the front glass together. The 1st and 3rd shelves have notches where I used epoxy to glue 4 magnets to the shelf. There are also 3mm holes cut in the plexiglass. It’s kind of weird, but works and I didn’t have to use any hinges.

Added the minifigs

I used a hot glue gun to mount the minifigs using the engraged indicators for perfect spacing!

Small collection of figures

After the first one was a success, I made 2 more. Still need another one!

Mounted using picture frame hangers

I used 2 sawtooth picture frame mounts per display case to mount everything to the wall. All done!

Mistakes

  • probably could have designed the frame mounts in the other direction so the frame can sit flush on a flat surface
Categories
Builds

Giant LEGO Minifig Mount

Instead of a display case, I wanted to make a wall mount with lego pegs that my large LEGO minifig lights and clocks could sit in. They come in 2 different sizes.

Measured the buttons to fit into the minifig
Categories
Builds

Giant Creeper

Don’t waste old Amazon cardboard boxes! I used my CO2 laser to build parametric boxes with variables for height, width, and depth to recreate this finger jointed Minecraft creeper!

Here is a look at the creeper without the skin

These are the parametric boxes. The head is 8x8x8, the body is 12x8x4 and the feet are 8x6x4

Categories
Builds

CO2 Laser Control Panel

I absolutely LOVE my Class 4 CO2 Laser cutter/engraver. But it definitely needs some improvements. I’ve added custom lighting, camera, and analog milliamp reader to it and needed a control panel to manage everything. I designed this as an inset panel that controls the AC lines (which are connected to a new UPS).

Prototype test plate

My 3d printer always prints a little larger. My designs need about 0.5-1mm tolerance for fittings so I printed out this flat plate to test the panel mounted switches and hole placements.

Categories
Builds

Picture Frame

Emma made me this beautiful ceramic heart for Valentines Day! I decided to make a lightbox style frame to hang it on the wall using slots and glue to keep everything secure.

Test cut done with Amazon boxes!

I designed the frame in Fusion360. It was built with 3 different materials and thicknesses: plexiglass, MDF, and supportboard for the back. This is my first multi-part laser piece.

Cutting like butter through the 1/4 MDF

These settings work for me for 1/4 dry MDF. 60watts, 10mm/s, 40-50% power, 2 passes (roughly 13 milliamps). It’s just enough to see the burn through the bottom and pop the pieces out of MDF.

Cut with the final materials

Pieces fit together perfectly. My laser hasn’t been calibrated yet so the cuts were slightly at an angle but for such small connections, it wasn’t an issue.

Added heart to the box, secured with hot glue gun

I added the piece to the frame. The light blue/white heart didn’t show to well with the white background.

Red really made the piece stand out

And here is the final product! Might engrave something on the bottom right later just for fun, but for now it looks amazing.

Categories
Builds

Squeeze Bottle Rack

In order to save counter space, I designed a rack in Fusion 360 to cut out 1/4 inch MDF rack. The rack is designed to be mounted to the side of a cabinet, and use double sided mounting tape (along with some physics) to securely hold the bottles in place.

Here it is mounted, perfect fit, snug

Categories
Builds

Yi Home Window Mount

  • Build Time: 4 hours
  • Build Difficulty: 2

Yi Home cameras are inexpensive, but you can’t use them outdoors. I built this 2 piece window mount (with SVG sticker for those who have a Cricut). This project was an exercise using Fusion 360 and threads, as well as practicing assembling components which is much like assembling parts in SolidWorks.

The Tools

  • 3D printer
  • Cricut Maker
  • Fusion 360
  • Cricut Maker

The Materials

  • PLA filament
  • double sided mounting tape
  • vinyl adhesive
  • Yi Home Camera

The Design

In order for the Yi Home IR (night) lights to work, the camera must be completely touching the glass of the window you’re mounting it do. Since mounting tape comes in different thicknesses, I decided to make this 2 pieces with threads so that the depth could be adjusted.

Mount the base to a clean window with your choice of double sided mounting tape, insert the camera into the other piece, screw in the camera until you feel it press up against the glass. If you leave a gap, you will see the reflection of the infrared lights.

Final printed product

Here is the final 2 piece product mounted to the window. It works great! The threads are really tight, and had to do some light sanding and screw and unscrew many many times to wear down the edge a bit.

Categories
Builds

Street Light

  • Build Time: 6 Days
  • Build Difficulty: 5

Not sure why, but I wanted to create my own street light. It features LEDs, an Arduino controller with WiFi and notifications, resin-cast lenses from silicon molds, 3D printed parts, as well as some store bought piping.

The Tools

  • 3D printer (Creality CR-10)
  • dremel with saw attachment
  • mini blowtorch
  • hot glue gun

The Materials

  • black and clear PLA filament
  • 2 part silicon mold compound
  • 2 part epoxy resin compound
  • food coloring and epoxy tiny
  • M2 bolts and nuts
  • sandpaper
  • grey filling undercoat rattlecan
  • high temp matte black paint rattlecan

The Design

Designing the initial pieces

I eye-balled the design after staring at pictures of street lights. I noticed that they are different everywhere. Some have fully round covers, others are cut out like I have. Some have small backs, some large. Some are black with yellow outlines, some don’t. The pro is that I just need to design something close, the con is that there’s no single classic design.

The above files were all designed in Solidworks. They are meant to be assembled using M2 bolts/nuts to give it the industrial look. I didn’t design the pole/stand yet because I wanted to get a feel for the size first before deciding on the pole height and thickness.

The Build

Initial print with “transparent” PLA

I was really unhappy with the “transparent” PLA that i used to print the lenses. There were 2 versions I printed in attempting to get it clear. They were a big fail, but I ended up using it to make a silicone mold which I use to cast resin which worked out much better!

Old silicon mold compound was rock hard

Of course my existing silicone compound had expired. I didn’t even know they have expiration dates. You can see it’s nearly full, only used it once for a test. Had to buy compound as these have about a 1 year shelf life, or a few months if you open the bottle.

Making the silicon mold

I used a glue gun and foam board to put together a tiny box for the mold. I also glued the lens the bottom to prevent it from shifting.

Mold poured

The mold takes about 12 hours to cure. There was absolutely no smell, and the compounds were easy to clean, unlike 2 part epoxy resin.

Green resin casted!

I normally color resin with a few drops of food coloring, but usually you can use acrylic paint. I bought some resin coloring just for kicks and the green came out perfect. The red however was way to opaque and I resorted back to food coloring to get a more translucent resin.

Finally looking legit!

Green and yellow came out perfect the first time. Red took me 3 times to get right. I don’t have a degassing chamber so there are tiny bubbles, I think it will help with diffusing the LEDs under. We shall see!

First test with level converter for 3.3v to 5v signalling on the 8212b

ESP8266 is a 3.3v controller. 8212b is a 5v signal. Here I am doing a quick prototype test to see if the signalling works… spoiler alert, it didn’t. Adafruit’s NeoPixel library didn’t like it.

Soldering took forever!

I used 5v neopixels (8212b) to form an array of lights, 10 LEDs for each street light. I mounted card stock under it to help with the color and adhesion.

Debugging digital signals from the 8212b channel

Using 5v Arduino Nano I was able to get good signalling to the 8212b neopixels. However, this needs WiFi so I switched to a beloved ESP8266 3.3V microcontroller. I could not get the signal to work correctly using Adafruit’s NeoPixel library. Instead I had to switch over to FastLED.

Nightmare comparing signals between Nano and ESP8266!

I used my trusty Rigol to try to diagnose the difference between the signal libraries. At the end of the day, I don’t have time to debug the Adafruit library and running with FastLED. Also look how clean the signal is! those series resistors really help with bounce!

Categories
Builds

Triathlon Bike Phone Mount

  • Build Time: 3 days
  • Build Difficulty: 3

I spend hours and hours on my bike. I needed an aerodynamic custom phone mount designed specifically for my phone/bike setup. This is my first multi-part assembly in Solidworks. So satisfying!

My Ironman triathlon bike.. a Felt DA3

Before I begin, let’s stop and take a look at this beautiful bike. It’s not as high end as some of the $15k+ bikes out there, but it’s gotten me throw many Ironman races.

The Tools

  • 3D printer
  • digital caliper

The Materials

  • M2 screws and nuts of varying length
  • PLA filament

The Design

Assembly built in solidworks

I measured the diameter of my aero bars and also the distance between the stem where it would be mounted. I decided on a 3 part assembly to make it easier to print. The pieces of the assembly where designed to be held together with M2 screws/bolts.

The Build

Width fail… used the wrong variable

Always used variable names in Solidworks, but also give them meaningful names so you don’t end up using the wrong measurement for the mount gap width here to account for the stem.

Design fixed and reprinted

After re-printing the design, I pushed in the hex nuts into the slots I designed and screwed bottom mount together. The 3D printer needs a good amount of tolerance for a good fit. I used 2mm for these M2 screws but the fitting was too tight.