Categories
Builds In Progress

Mini Mailbox

I receive (and send) lots of packages from my front door. I love creating scaled versions of things, particularly undersized. I decided to recreate a small version of the classic USPS mailbox for my front door as a place for packages to be held.

Additionally, my idea is to add LEDs, a camera, and make it WiFi enabled so I can monitor at all times, assuming the delivery carriers understand what it’s for. Hopefully I can make it intuitive enough but still retain the classic unmistakable design.

The Materials

  • 1/4 inch MDF
  • wood glue
  • painters tape
  • blue paint
  • inkjet adhesive paper
  • LEDs
  • WiFi camera
  • adhesive spray
  • colored card stock
  • flexible TPU filament

The Tools

  • laser cutter
  • fusion360
  • lightburn
  • Cricut Maker
  • paper trimmer
  • Canon Pro-100 inkjet
  • 3d printer

The Build

Fusion version

I envisioned this to be about 2 feet tall. The parametric design would let me adjust the dimensions. The hardest part of the design (and newest challenge for me) is the curved top. So far, everything I’ve created is pretty square. For this, I’ll have to use some tricks to make the curved top.

Cutting out the curved top

Cutting this took forever! It’s basically an alternating pattern of cuts. In Fusion360, I measured the inner curve length, and built a new piece based on that. The outer curve length is irrelevant for this because the cuts would provide the longer length that I need.

It came out super bendy! So excited. After test fitting the top curve, in the future, I’m going to make the piece slightly shorter than the inner curve surface. Even the the top is doing most of the stretching, the bottom also stretches as well so leaving some room would do just fine. I didn’t leave any tolerance to i had to really tape down the piece well during the gluing process.

First test assembly

Always remember to use the correct height when setting your laser/bed distance. The laser beam is hourglass shaped, and the middle of it should be the middle of your material. I didn’t quite adjust it right so the edges were slightly angled and required a little sanding.

First delivery!

Emma wanted to be the first one to deliver a message in the new mailbox. She is the best!

Testing some packages

I had a difficult time deciding on the right amount of storage. I think the majority of packages will fit in here. it’s roughly 13x13x17.

Glued together and ready for paint

Glued all the pieces together. I used tape to hold down the top curved wood while using wood glue. Everything came together as expected!

Painted with decals and logos

After painting, I added the logos and also lined the inside with colorful rainbow card stock. I also added a little disclaimer label in case somebody actually believes it’s a real mailbox.

Final product installed outside

Here is the mailbox with all the logos and actually being used outside!

Updates

MDF legs on concrete are not great. I’m going to design flexible TPU feet for it to protect it from bumps and scrapes, but also leave it off the ground to prevent moisture.

My original designs were built for 6.4mm MDF. I adjusted the material thickness to 8mm, then generated this STL for flexible TPU. The reason is that I’ve found that TPU needs quite a bit of tolerance. Even if there is extra room, I can fill it with glue.

Installed the feet with a hot glue gun

20% flexible TPU infill + 2mm tolerance fit perfectly! The flexible material really helps to protect the piece and also prevent it from sliding.

Camera installed and live

Using double sided padded tape, I mounted a camera to the top and now get motion alerts. Going to finally put this project to rest for awhile. Thanks for reading!

Categories
Builds In Progress

CO2 Laser Control Panel

I absolutely LOVE my Class 4 CO2 Laser cutter/engraver. But it definitely needs some improvements. I’ve added custom lighting, camera, and analog milliamp reader to it and needed a control panel to manage everything. I designed this as an inset panel that controls the AC lines (which are connected to a new UPS).

Prototype test plate

My 3d printer always prints a little larger. My designs need about 0.5-1mm tolerance for fittings so I printed out this flat plate to test the panel mounted switches and hole placements.

Categories
Builds In Progress

Street Light

Not sure why, but I wanted to create my own street light. It features LEDs, an Arduino controller with WiFi and notifications, resin-cast lenses from silicon molds, 3D printed parts, as well as some store bought piping.

The Tools

  • 3D printer (Creality CR-10)
  • dremel with saw attachment
  • mini blowtorch
  • hot glue gun

The Materials

  • black and clear PLA filament
  • 2 part silicon mold compound
  • 2 part epoxy resin compound
  • food coloring and epoxy tiny
  • M2 bolts and nuts
  • sandpaper
  • grey filling undercoat rattlecan
  • high temp matte black paint rattlecan

The Design

Designing the initial pieces

I eye-balled the design after staring at pictures of street lights. I noticed that they are different everywhere. Some have fully round covers, others are cut out like I have. Some have small backs, some large. Some are black with yellow outlines, some don’t. The pro is that I just need to design something close, the con is that there’s no single classic design.

The above files were all designed in Solidworks. They are meant to be assembled using M2 bolts/nuts to give it the industrial look. I didn’t design the pole/stand yet because I wanted to get a feel for the size first before deciding on the pole height and thickness.

The Build

Initial print with “transparent” PLA

I was really unhappy with the “transparent” PLA that i used to print the lenses. There were 2 versions I printed in attempting to get it clear. They were a big fail, but I ended up using it to make a silicone mold which I use to cast resin which worked out much better!

Old silicon mold compound was rock hard

Of course my existing silicone compound had expired. I didn’t even know they have expiration dates. You can see it’s nearly full, only used it once for a test. Had to buy compound as these have about a 1 year shelf life, or a few months if you open the bottle.

Making the silicon mold

I used a glue gun and foam board to put together a tiny box for the mold. I also glued the lens the bottom to prevent it from shifting.

Mold poured

The mold takes about 12 hours to cure. There was absolutely no smell, and the compounds were easy to clean, unlike 2 part epoxy resin.

Green resin casted!

I normally color resin with a few drops of food coloring, but usually you can use acrylic paint. I bought some resin coloring just for kicks and the green came out perfect. The red however was way to opaque and I resorted back to food coloring to get a more translucent resin.

Finally looking legit!

Green and yellow came out perfect the first time. Red took me 3 times to get right. I don’t have a degassing chamber so there are tiny bubbles, I think it will help with diffusing the LEDs under. We shall see!

First test with level converter for 3.3v to 5v signalling on the 8212b

ESP8266 is a 3.3v controller. 8212b is a 5v signal. Here I am doing a quick prototype test to see if the signalling works… spoiler alert, it didn’t. Adafruit’s NeoPixel library didn’t like it.

Soldering took forever!

I used 5v neopixels (8212b) to form an array of lights, 10 LEDs for each street light. I mounted card stock under it to help with the color and adhesion.

Debugging digital signals from the 8212b channel

Using 5v Arduino Nano I was able to get good signalling to the 8212b neopixels. However, this needs WiFi so I switched to a beloved ESP8266 3.3V microcontroller. I could not get the signal to work correctly using Adafruit’s NeoPixel library. Instead I had to switch over to FastLED.

Nightmare comparing signals between Nano and ESP8266!

I used my trusty Rigol to try to diagnose the difference between the signal libraries. At the end of the day, I don’t have time to debug the Adafruit library and running with FastLED. Also look how clean the signal is! those series resistors really help with bounce!

Categories
Builds In Progress

Megaman Blaster

Front of the cannon

I custom designed in OpenScad this front of the cannon with LEDs

Backside of canon tip

The back was designed to have holes exactly the size to mount LEDs in. The pieces were printed with “translucent” PLA to diffuse the light.

Gotta have the helmet

I found a mini helmet online and printed a small scale version of it.

Initial print, super rough

This is the assembled first print. There was so much sanding that I had to do. I learned a lot about how to fill holes and smooth out the lines in the print. The support material that was broken off left so much work to be done.

I used some 3M filler to smooth out the print lines

Especially around the yellow lightbar the print was really rough. The post prep on this part was intense.

After sanding and painting

Did about 5 sessions of filling and sanding with bondo before I got it to a point where it was nice and round. Here’s me holding the canon. It has a handle inside. Still need to build the electronics.